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Abstract 

Background Clinical trials often involve some form of interim monitoring to determine futility before planned trial 
completion. While many options for interim monitoring exist (e.g., alpha-spending, conditional power), nonparamet-
ric based interim monitoring methods are also needed to account for more complex trial designs and analyses. The 
upstrap is one recently proposed nonparametric method that may be applied for interim monitoring.

Methods Upstrapping is motivated by the case resampling bootstrap and involves repeatedly sampling 
with replacement from the interim data to simulate thousands of fully enrolled trials. The p-value is calculated for each 
upstrapped trial and the proportion of upstrapped trials for which the p-value criteria are met is compared with a pre-
specified decision threshold. To evaluate the potential utility for upstrapping as a form of interim futility monitoring, 
we conducted a simulation study considering different sample sizes with several different proposed calibration strate-
gies for the upstrap. We first compared trial rejection rates across a selection of threshold combinations to validate 
the upstrapping method. Then, we applied upstrapping methods to simulated clinical trial data, directly compar-
ing their performance with more traditional alpha-spending and conditional power interim monitoring methods 
for futility.

Results The method validation demonstrated that upstrapping is much more likely to find evidence of futility 
in the null scenario than the alternative across a variety of simulations settings. Our three proposed approaches 
for calibration of the upstrap had different strengths depending on the stopping rules used. Compared to O’Brien-
Fleming group sequential methods, upstrapped approaches had type I error rates that differed by at most 1.7% 
and expected sample size was 2–22% lower in the null scenario, while in the alternative scenario power fluctuated 
between 15.7% lower and 0.2% higher and expected sample size was 0–15% lower.

Conclusions In this proof-of-concept simulation study, we evaluated the potential for upstrapping as a resampling-
based method for futility monitoring in clinical trials. The trade-offs in expected sample size, power, and type I error 
rate control indicate that the upstrap can be calibrated to implement futility monitoring with varying degrees 
of aggressiveness and that performance similarities can be identified relative to considered alpha-spending and con-
ditional power futility monitoring methods.
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Background
Interim futility monitoring is an essential part of many 
clinical trial designs. In addition to providing opportuni-
ties for safety monitoring and more effectively allocating 
patients to the most effective treatment possible, interim 
monitoring can also increase efficiency by stopping trials 
that show particularly strong signs of intervention futil-
ity before their planned endpoints and target sample size 
[1]. This allows time and resources to be directed towards 
interventions that show promising results early on in the 
process and away from interventions that are likely to 
yield null or underpowered results at the end of the trial. 
Interim monitoring is commonly used in trials of many 
different designs across all phases of the research pro-
cess, with multiple monitoring points allowing the poten-
tial to stop a trial early at several points before full data 
collection is complete. Interim monitoring should always 
be accounted for at the design stage of a trial to avoid 
an inflated type I error rate or a reduction in statistical 
power [2–4].

There are many methods available to perform interim 
monitoring, including group sequential designs and 
alpha-spending functions with boundaries such as 
O’Brien-Fleming, Peto, or Pocock [2–8]. Group sequen-
tial designs generate p-value boundaries for futility to be 
applied at the planned monitoring points and at conclu-
sion of the trial [1, 8]. These designs also account for mul-
tiple interim monitoring points to maintain the desired 
trial operating characteristics, such as power and the 
type I error rate.

Another method used for futility monitoring is con-
ditional power. Conditional power approaches rely on 
extrapolating the likelihood of finding a positive result 
at trial completion given the interim data [1, 9]. Like 
group sequential designs, conditional power can be used 
to define interim stopping boundaries at pre-planned 
analysis points, while controlling the power and type I 
error rate. After calculating conditional power from the 
interim dataset this can then be compared to a pre-spec-
ified stopping boundary to determine whether the trial 
should stop early (e.g., declare futility if the conditional 
power is less than 10% based on interim data) [10].

One recently proposed nonparametric framework that 
could be applied in the context of interim monitoring 
is the upstrap, a resampling-based strategy that builds 
on the concept of the case resampling bootstrap [11]. 
Upstrapping relies on repeatedly resampling incomplete 
data to impute future observations. In a clinical trial 
context, this could be applied to predict chances of trial 
success, similar to conditional power or the Bayesian 
posterior predictive probability of success. The method 
has been implemented to perform interim monitoring in 
clinical trials [12–14]. However, there has not yet been a 

thorough review of the upstrap method’s performance or 
validity when used for interim monitoring.

In this paper, we seek to fill the evidence gap of the 
potential for the upstrap as a futility interim moni-
toring method by evaluating its performance under a 
more straight-forward binary outcome. We use simu-
lation studies to evaluate the general performance of 
the upstrap algorithm when used for interim moni-
toring, which has readily available alpha-spending 
and conditional power approaches for comparison. 
In the “Methods” section we introduce the concept of 
the upstrap as applied to interim monitoring in clini-
cal trials and potential calibration strategies to iden-
tify stopping rules. The “Results” section presents the 
results from our simulation studies, which are used to 
elucidate the properties of the upstrap and compare 
to existing methods for interim monitoring. We con-
clude in the “Case study: TREAT NOW data applica-
tion” section with a discussion of this newly proposed 
approach to interim monitoring and settings where the 
proposed calibrations may be appropriate.

Methods
Upstrap algorithm
Upstrapping is a generic approach inspired by boot-
strap resampling that resamples the available data (with 
replacement) to supplement data already collected until 
a new dataset is generated that matches a desired total 
sample size [11]. In the context of a clinical trial, this 
represents the planned maximum sample size to enroll 
assuming no early termination at an interim analysis. The 
resampling is done within each treatment group to pre-
serve the desired allocation ratio (e.g., 1:1 between study 
arms).

The steps for applying upstrapping to an interim analy-
sis dataset are: 

(i) Resample with replacement from the observed 
interim data up to the expected total enrollment to 
generate a “complete” dataset.

(ii) Calculate the p-value for the upstrapped “complete” 
dataset using the intended final analysis method.

(iii) Repeat a large number of times (e.g., NUp = 1000).
(iv) Calculate the proportion of upstrapped p-values 

that meet a set p-value threshold (e.g., p < 0.05).
(v) Compare the calculated proportion to the set pro-

portion threshold (e.g., P < 0.05 ). If the proportion 
of resampled datasets that meet the given p-value 
threshold is less than P, declare trial futility.

To better illustrate this process, consider the follow-
ing example: a trial is designed with an upstrapping-
based interim futility analysis at the 50% stopping point. 
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Using 1000 upstrapped datasets, only 40 met the p-value 
threshold of p < 0.05 . This is a proportion of 0.04, which 
is less than the set proportion threshold of P < 0.05 . 
Therefore, the upstrapped futility analysis would recom-
mend that this trial stop due to anticipated futility.

Notably, this means that set p-value and proportion 
thresholds must be determined a priori. At any interim 
stage, the upstrap could be used to estimate the probabil-
ity that the trial will be “successful” based on the given 
thresholds, with a decision made with regard to poten-
tially stopping the trial for futility.

Simulation settings
A variety of simulation settings were considered based on 
three varying parameters: sample size, power, and interim 
analysis monitoring point. Each simulation setting 
included a binary outcome measured once per subject 
with subjects assigned to either treatment or control. For 
purposes of this simulation, we assume all outcome data 
is collected at enrollment without missingness or censor-
ing. The proportion of patients with a positive outcome 
in the control group was set to be 0.6, while the propor-
tion in the treatment group was calibrated to maintain 
80% power and a 5% type I error rate for the fixed sam-
ple design. The maximum sample size for each treatment 
group was selected to reflect a range of trial sizes: 20, 80, 
300, and 1000 (corresponding to total sample sizes of 40, 
160, 600, and 2000). Power includes cases representing an 
80% power alternative scenario and 5% type I error rate 
null scenario, as well as underpowered (50% power) and 
overpowered (95% power) scenarios to reflect real world 
uncertainty. Interim monitoring points were based on 
proportion of subjects enrolled (0.25, 0.50, or 0.75) and 
are considered to be sequential within a trial. For each 
setting, we considered p-value thresholds between 0 and 
0.1 and proportion thresholds from 0 to 1 when applying 
the upstrapping algorithm. Chi-squared or Fisher’s exact 
test, depending on test assumptions, were used to esti-
mate the treatment effect in every upstrapped dataset as 
well as the full sample dataset. For full sample analyses, 
a two-sided p-value of less than 0.05 was considered to 
be significant (except for alpha-spending interim moni-
toring approaches which adjust the full sample p-value to 
control type I error). Upstrapping was performed using 
NUp = 1000 upstrapped datasets at each interim analysis. 
Each simulation setting was repeated 1000 times using R 
v4.0.2 (Vienna, Austria).

Method validation
The first research aim was to validate use of the upstrap 
method for interim monitoring. This involved using 
simulation results to evaluate the method’s probability 
of stopping based on the grid of p-value and proportion 

thresholds (defined as a 20  × 20 grid with p-values 
between 0 and 0.1 and proportions between 0 and 1). 
This grid of threshold values was applied to each simula-
tion setting, providing results across all combinations of 
sample size, power, and proportion of subjects enrolled. 
To simplify the validation, the summary figures present 
the proportion of upstrapped samples which meet the 
given p-value and proportion combination. Essentially, 
the goal of this research aim is to compare how often the 
upstrap method determines a trial will stop based on a 
variety of threshold values, then evaluate how this pro-
portion grid changes between simulation settings.

Method calibration
Since the upstrap method relies on two key threshold val-
ues, p-value (p) and proportion of upstrapped samples 
(P), we must also consider how to properly calibrate these 
based on the simulation results. Using the grid of poten-
tial p-value and proportion threshold values discussed in 
the “Method validation” section, three different calibra-
tion approaches were considered and are presented in the 
following paragraphs.

Arbitrary calibration (AU) assumes the desired alpha-
level for the p-value threshold assuming the proportion 
of upstrapped samples less than the desired type I error 
rate. We chose p < 0.05 and P < 0.05 for the p-value and 
proportion threshold criteria.

Variable calibration (CU) uses a pre-specified grid 
of potential p-value and proportion thresholds and then 
identifies the p-value and proportion threshold combina-
tion needed for futility monitoring to achieve a desired 
level of type I error rate or power.

Group sequential inspired calibration (GU) uses 
the p-values from the alpha-spending O’Brien-Fleming 
boundary for the p-value threshold and searches for a 
corresponding proportion to achieve a desired level of 
type I error or power.

For each calibration approach, the rejection rates were 
calculated (i.e., type I error rate for null scenarios, power 
for alternative scenarios). Threshold values were then 
chosen based on attempting to optimize these charac-
teristics, considering all possible threshold combinations 
without preference. Only threshold combinations pro-
ducing a type II error rate of at most 20% were consid-
ered, then the combination which maximized power was 
selected from these candidates. This process was done 
separately for each sample size and monitoring point 
within the CU and GU calibration approaches.

Method application
To evaluate the performance of the upstrap algorithm, we 
applied both upstrapping and group sequential methods 
to the simulation results to perform interim monitoring. 
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We considered the three different calibration approach 
described previously, as well as alpha-spending func-
tions with O’Brien-Fleming (OBF) and Pocock (PO) 
style boundaries. We implemented conditional power 
approaches using the longCART package in R [15]. We 
used four different conditional power based stopping 
boundaries: declaring futility if conditional power was 
less than 1%, 5%, 10%, or 20%. These four approaches 
represent a range between more conservative (CP 1%) 
and more aggressive (CP 20%) stopping boundaries 
[16]. Since this analysis is focusing specifically on futility 
monitoring, we exclusively considered futility only moni-
toring designs and did not also attempt to cover designs 
involving efficacy monitoring. Interim monitoring points 
of 0.25, 0.50, and 0.75 were used sequentially within each 
simulated trial.

Each simulation setting is summarized by the mean 
and standard deviation of expected sample size, the 
proportion of trials that stopped early, and the propor-
tion of trials that rejected the null hypothesis. A fixed 

sample (FS) design without interim monitoring was also 
implemented to serve as a reference for each design with 
interim monitoring.

Results
Performance of upstrapping across sample sizes 
and information fractions
Before applying a specific calibration strategy (e.g., AU, 
CU, or GU), we first evaluated the general trends for 
sample sizes and information fractions across a grid of 
p-values and proportion of upstrapped samples less than 
or equal to that p-value. This allows for a validation of 
the general concept of upstrapping, which we present for 
both the null and alternative scenario.

Figure 1 displays heatmaps representing the probability 
of stopping the trial for futility based on the grid of thresh-
old combinations, with different plots showing potential 
variation due to sample size, power, and the information 
fraction available at the interim look. Results indicate that 
across sample sizes and information fractions the upstrap 

Fig. 1 Method validation results: Results reported as heatmaps showing the probability of meeting the defined p-value and proportion combination 
(pink representing more likely to meet the criteria for declaring futility, blue representing less likely) for various p-value (y axis) and proportion (x axis) 
threshold combinations. The null (5% type I error, shown in the top panel) and alternative (80% power, shown in the bottom panel) scenarios are 
presented with subplots faceted by information fraction at the interim look (0.25, 0.50, 0.75 from left to right). Results are shown for the total sample 
size equal to 600 setting (results for simulations with total sample sizes of 40, 160, and 2000 are available in the supplementary materials and were 
not found to vary significantly from the N = 600 setting)
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has a higher proportion of upstrapped samples meeting 
the criteria across different combinations in the null (5% 
power) case rather than the alternative (80% power) case. 
This can be thought of as interim monitoring for poten-
tial futility, where the higher proportions (i.e., greater pink 
shaded regions) in the null scenario indicate the upstrap is 
more likely to meet criteria for potential stopping. These 
findings are encouraging and indicate that the method 
produces expected results when used to perform interim 
futility monitoring. Additionally, results show similar 
trends across monitoring points within a given sample 
size, as well as between sample sizes at the same monitor-
ing point. Overall, the validation results provide evidence 
that upstrapping has higher proportions of stopping (i.e., 
less blue and more pink) in null scenarios and may be use-
ful for futility monitoring depending on the calibration of 
stopping rules.

Sequential monitoring results
This section presents the results for the three proposed 
upstrap calibration approaches (AU, CU, and GU), two 
alpha-spending functions (PO and OBF), and four condi-
tional power approaches (CP 1%, CP 5%, CP 10%, and CP 
20%) when there are three interim looks at 0.25, 0.50, and 
0.75 interim fractions of data under both the null and the 
80% powered alternative scenarios. Each interim stop-
ping rule starts with the traditional alpha-spending and 
conditional power results before introducing the results 
for the upstrap approaches.

Figure  2 presents the expected sample size, rejection 
rates, and interim stopping rates, respectively. Table  1 
presents the results for each interim monitoring strat-
egy as the difference in rejection rate from a fixed sam-
ple (FS) design without interim monitoring and the ratio 
of the expected sample size to the fixed sample size for 
the null and alternative scenarios, respectively. We addi-
tionally describe the general performance of the upstrap 
calibrations when under- or over-powered. The specific 
numeric summaries of the under- or over-powered sce-
narios are presented in the Supplementary Materials in 
Tables S1-S15.

Main results
The OBF method has type I error rates within 0.5% of the 
FS design in the null scenario and reductions of approxi-
mately 2% to power in the alternative scenario. The ESS 
across all sample sizes is about 65% of the FS in the null 
when we expect to stop for futility, and around 92% of 
the FS in the alternative when stopping for futility is sub-
optimal. The PO method has similar type I error rates 
with even smaller ESS (around 50% of FS under the null), 
but has approximately a 10% decrease in power relative 
to the FS design across all sample sizes.

The CP 1% method has type I error rates around 1.6% 
lower compared to FS, with simultaneous reductions in 
power of up to 4.7%. ESS is about 50% of the FS in the 
null case and 94% in the alternative case. As the threshold 
value used in the CP methods increased from 1 to 20%, 
the method stops for futility progressively more often, 
leading to more pronounced decreases in both power 
and type I error rate relative to the FS design. The most 
aggressive version of CP (CP 20%) produced decreases 
in type I error rates of approximately 3% and decreases 
in power of close to 25%. ESS is around 31% of the FS 
in the null scenario and 71% in the alternative scenario. 
CP approaches with thresholds greater than 1% showed 
undesirably large reductions in power compared to the 
FS design.

The CU upstrap calibration performs most similarly to 
the PO, albeit with a greater reduction in power at larger 
sample sizes of up to 18.3%. The AU and GU upstrap 
calibrations have type I errors within 1% of the FS design 
while needing only 56–62% of the ESS. However, the 
AU power is 5.2–7.2% lower than FS with an ESS of 
86–91% of FS, and the GU difference in power increases 
from within 0.1% of FS to 8.3% lower as the sample size 
increases.

CP designs are highly influenced by the percentage 
thresholds chosen but offer significant reductions in sam-
ple size, with CP 1% performing best relative to other CP 
approaches. The OBF is the most balanced with respect 
to type I error and power trade-offs, but the savings in 
ESS are minimal relative to the reductions with CP 1%, 
AU, or GU upstrap calibrations for a futility only moni-
toring design. If decreasing the expected sample size is 
an important consideration, AU or GU may represent an 
acceptable trade-off considering it is about 5% lower than 
OBF in all null scenarios. AU and GU generally perform 
comparably to CP 1%, although CP 1% performs moder-
ately better in terms of ESS and power. Additionally, the 
AU requires no prior calibration, resulting in a low bar-
rier to implementation.

Results for under‑ and over‑powered scenarios
Simulations were also conducted to evaluate the perfor-
mance of the interim monitoring methods if an under-
powered (50% power) or overpowered (95% power) 
scenario were encountered when the design was cali-
brated assuming an effect size corresponding to 80% 
power. These results are presented in the supplementary 
materials with figures and tables showing these scenarios 
for each of the operating characteristics. The underpow-
ered scenario performs between the previously described 
null and alternative scenarios. The overpowered scenario 
has high rejection rates for most methods except PO 
which has lower power relative to the other approaches.
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Case study: TREAT NOW data application
In order to show how upstrapped futility methods per-
form when applied to realistic data, we also used data 
from the previously mentioned TREAT NOW trial as a 
case study [13, 14]. TREAT NOW examined the use of 

Lopinavir/ritonavir (administered orally twice a day for 
14 days) vs placebo for treating COVID-19 in the out-
patient setting. Patients filled out longitudinal surveys 
asking about the severity of their symptoms each day for 
study days 1–16, with an additional follow-up survey on 

Table 1 Main results from alternative and null scenario simulations for the performance of the interim analysis calibration method 
relative to the fixed sample design. CU is the calibrated upstrap, AU is the arbitrary upstrap, GU is the group-sequential upstrap, OBF 
is the O’Brien-Fleming alpha-spending function, PO is the Pocok alpha-spending function, CP is the conditional power method. ESS 
refers here to expected sample size, while TIE refers to the type I error rate. Any positive increases in TIE and power for GU, OBF, and PO 
relative to the fixed sample occur because group sequential designs involve an adjusted p-value boundary for the final analysis

Null scenario Alternative scenario

 Method N Difference in TIE from fixed 
sample

Ratio of ESS to fixed 
sample

Difference in power from 
fixed sample

Ratio of 
ESS to fixed 
sample

AU 40 −0.003 0.58  −0.052 0.90

AU 160  −0.008 0.56  −0.072 0.86

AU 600  −0.005 0.61  −0.064 0.89

AU 2000   −0.005 0.62  −0.066 0.91

CU 40  −0.011 0.48  −0.122 0.80

CU 160  −0.009 0.46  −0.135 0.80

CU 600  −0.013 0.45  −0.147 0.79

CU 2000  −0.015 0.45  −0.183 0.79

GU 40  −0.002 0.60 0.001 0.90

GU 160 0.002 0.61  −0.032 0.91

GU 600  −0.004 0.59  −0.076 0.89

GU 2000  −0.008 0.59  −0.083 0.90

OBF 40  −0.002 0.62  −0.001 0.90

OBF 160 0.004 0.64  −0.017 0.92

OBF 600 0.004 0.66  −0.035 0.93

OBF 2000  −0.005 0.67  −0.026 0.94

PO 40  −0.010 0.42  −0.126 0.75

PO 160 0.000 0.49  −0.093 0.82

PO 600 0.000 0.53  −0.097 0.84

PO 2000  −0.001 0.54  −0.081 0.87

CP 1% 40  −0.013 0.52  −0.008 0.98

CP 1% 160  −0.021 0.50  −0.026 0.92

CP 1% 600  −0.012 0.50  −0.033 0.93

CP 1% 2000  −0.019 0.49  −0.047 0.93

CP 5% 40  −0.021 0.42  −0.056 0.90

CP 5% 160  −0.026 0.39  −0.098 0.83

CP 5% 600  −0.016 0.38  −0.117 0.83

CP 5% 2000  −0.025 0.39  −0.122 0.85

CP 10% 40  −0.027 0.38  −0.126 0.85

CP 10% 160  −0.028 0.34  −0.128 0.80

CP 10% 600  −0.022 0.34  −0.164 0.78

CP 10% 2000  −0.031 0.34  −0.203 0.78

CP 20% 40  −0.029 0.32  −0.219 0.72

CP 20% 160  −0.033 0.31  −0.211 0.72

CP 20% 600  −0.024 0.31  −0.275 0.69

CP 20% 2000  −0.035 0.31  −0.296 0.71
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study day 28. These results were summarized using a lon-
gitudinal ordinal symptom scale as the primary outcome. 
The original trial was terminated for futility after 75% of 
the planned sample had been collected. In order to be 
consistent with the simulation study presented above, we 
chose to simplify the data into a binary outcome express-
ing the presence or absence of symptoms at day 15. 
Multiple imputation was used to handle missing obser-
vations. All methods from the simulation study (AU, CU, 
GU, OBF, PO, CP 1–20%) were then applied to the 25%, 
50%, and 75% interim datasets respectively.

Results from the case study are presented in Table  2, 
showing the results of each futility analysis as well as 
the futility metric and reference threshold. For upstrap-
ping methods, the futility metric represents the propor-
tion of upstrapped datasets meeting the pre-specified 
p-value threshold p, while for OBF and PO the futility 
metric represents the observed critical value from the 
interim data, and for conditional power approaches the 
futility metric represents the calculated power to detect 
a treatment effect conditional on the interim data. Simi-
larly the reference thresholds for each of these methods 
convey the proportion threshold, P, needed to declare 
futility (for AU, CU, and GU); the critical value boundary, 
Z, used to define futility using group sequential methods 
(OBF, PO); or the conditional power threshold, CP, used 
for CP 1–20%. For the upstrapping methods, AU did not 
stop for futility at any stopping point while CU and GU 
both declared futility for the 50% and 75% interim looks. 
It is worth noting however that AU came very close to 
declaring futility at the 50% stopping point (with a futility 
metric of 0.065 which was only 0.015 above the thresh-
old of P < 0.05 ) and was also relatively close to declar-
ing futility at the 75% look (with a futility metric of 0.091 
which was only 0.041 above the threshold of P < 0.05 ). 
OBF stopped for futility only at the 75% stopping point, 

while PO stopped at both 50% and 75%. Of the condi-
tional power approaches only CP 20%, which is the most 
aggressive implementation of conditional power consid-
ered in this analysis, stopped for futility at the 25% and 
50% stopping points. CP 20% did not declare futility at 
the 75% stopping point however. Compared to OBF and 
conditional power approaches, CU and GU were both 
able to more quickly and consistently declare futility, 
leading to gains in trial efficiency. Overall the results of 
this case study show that, even when applied to realistic 
clinical datasets, upstrapping methods are a reasonable 
approach to futility monitoring and may even be able to 
more efficiently recognize early signs of futility compared 
to traditional methods.

Discussion
There are numerous strategies for conducting interim 
monitoring within a clinical trial. In this paper, we pro-
posed the use of the non-parametric upstrap as a poten-
tial futility interim monitoring strategy and evaluated 
its potential performance across a range of calibration 
strategies. While alpha-spending and conditional power 
approaches are well-established methods for interim 
futility monitoring, both may be limited in some contexts 
by their assumptions. Group sequential designs are based 
on Brownian motion which can be thought of as a Gauss-
ian process [8], whereas the conditional power designs 
implemented in this work rely on normal approxima-
tions [9]. While these assumptions may be appropriate 
for many data types and modeling strategies, there may 
be settings where nonparametric alternatives would be 
desired.

This paper presents simulation results using a simple 
binary outcome to establish the upstrap’s performance 
in direct comparison to standard methods, using a set-
ting where the assumptions of these traditional methods 

Fig. 2 Main analysis results: The left panel shows mean expected sample size (y axis) reported with error bars representing ± 1 SD for each 
interim monitoring method (x axis). Graphing scale is relative to total sample size. The middle panel shows rejection rate results, where rejection 
rate is defined as the proportion of simulated trials that reached trial completion and then rejected the null hypothesis. Rejection rate (y axis) 
is reported for each interim monitoring method (x axis). The right panel shows interim stopping rate results with interim stopping rate defined 
as the proportion of simulated trials that stopped early (y axis) reported for each interim monitoring method (x axis). Subplots are faceted by power 
(5% or 80% from left to right) and results are shown for the total sample size equal to 600 setting (results for simulations with total sample sizes 
of 40, 160, and 2000 are available in the supplementary materials and were not found to vary significantly from the N = 600 setting)



Page 8 of 10Wild et al. Trials          (2024) 25:312 

are not violated so that the upstrap can be more fairly 
and directly compared to standard interim monitoring 
designs. Another potential strength of the upstrap is the 
flexible nature of its resampling approach. For exam-
ple, the upstrap can be applied to either frequentist or 

Bayesian paradigms and is similar in many respects to 
the concepts of conditional power or predictive probabil-
ity, but it may make fewer assumptions for the interim 
monitoring methods regarding asymptotic properties or 
prior specification. The upstrap may also be useful for 
more complex methods, such as the Bayesian longitudi-
nal ordinal logistic regression model used in the TREAT 
NOW clinical trial which used an upstrapping approach 
to address computational limitations in estimating the 
Bayesian predictive probability of success [13, 14]. In 
general, the upstrap can be differentiated from condi-
tional power and predictive probability of success meth-
ods because of this greater flexibility. By implementing 
an upstrapping approach researchers can expand interim 
futility monitoring to a wider variety of settings where 
it may not be appropriate or desirable to use normal 
approximations (as needed to implement the conditional 
power approaches from this paper’s simulation study) or 
to specify a specific prior distribution (as required for a 
predictive power interim analysis).

The validation of the general performance of the 
upstrap across information fractions and different trial 
sample sizes confirmed the increased likelihood of reject-
ing for futility at interim analyses under the null instead 
of the alternative scenario. Upstrapping approaches 
were generally more likely to stop a trial early compared 
to PO and OBF, as shown in Fig. 2. CP 20%, the condi-
tional power method most likely to stop early, had gener-
ally lower type I error rates and reduced expected sample 
size compared to upstrapping methods, but with power 
significantly lower than the upstrapped results. Less 
aggressive conditional power methods performed better 
overall, with CP 1% achieving moderately lower expected 
sample size under the null setting compared to AU, while 
simultaneously maintaining slight advantages in power 
and type I error rates. Across all interim futility monitor-
ing settings, the GU approach provided what may be con-
sidered as acceptable trade-offs in certain trial contexts 
considering the reductions in ESS relative to OBF of up 
to 8% in the null scenario, while having less inflation of 
the type I error rate than other calibration strategies. The 
CU approach was overly conservative for futility moni-
toring. Interestingly, the AU approach performed well in 
futility monitoring and could be an easy-to-implement 
approach if slightly lower power is acceptable or the max-
imum sample size could be increased. Limiting interim 
analyses to occur later on in the trial, after accumulating 
a reasonable amount of data from which to make early 
stopping decisions, may be another effective way to fur-
ther improve upstrapping approaches.

Calibration and application results showed a clear 
trade off between power and type I error rate for the gen-
eral upstrapping method. This is not unexpected, but is 

Table 2 Case study results from the simplified TREAT NOW data 
example. For each stage (25%, 50%, and 75% interim looks) and 
each futility monitoring method, the results are summarized 
in terms of the futility metric, futility threshold, and the ultimate 
futility monitoring decision. For upstrapping approaches, futility is 
determined using the proportion P; group sequential approaches 
determined futility from the critical value Z; and conditional 
power methods determined futility from CP which is a measure 
of the power to detect a treatment effect conditional upon the 
interim data. OBF determined that it is not possible to stop after 
the 25% interim look, which means that the reference futility 
threshold and calculated futility metric are listed as NA for OBF 
and GU (which utilizes the OBF stopping criteria for its p-value 
threshold p). The ultimate decision of the futility analysis is 
reported as “Continue” for cases where the method decided not 
to stop early for futility and is reported as  “Stop” for cases where 
the method did decide to stop early for futility

Method Stage Calculated 
futility metric

Reference 
futility 
threshold

Futility decision

AU 25% P = 0.515 P < 0.05 Continue

AU 50% P = 0.065 P < 0.05 Continue

AU 75% P = 0.091 P < 0.05 Continue

CU 25% P = 0.549 P < 0.20 Continue

CU 50% P = 0.040 P < 0.20 Stop

CU 75% P = 0.046 P < 0.20 Stop

GU 25% NA NA Continue

GU 50% P = 0.691 P < 0.90 Stop

GU 75% P = 0.501 P < 0.80 Stop

OBF 25% NA NA Continue

OBF 50% Z = 0.566 Z < 0.543 Continue

OBF 75% Z = 1.074 Z < 1.301 Stop

PO 25% Z = 0.858 Z < 0.280 Continue

PO 50% Z = 0.566 Z < 0.711 Stop

PO 75% Z = 1.074 Z < 1.319 Stop

CP 1% 25% CP = 0.194 CP < 1% Continue

CP 1% 50% CP = 0.143 CP < 1% Continue

CP 1% 75% CP = 0.446 CP < 1% Continue

CP 5% 25% CP = 0.194 CP < 5% Continue

CP 5% 50% CP = 0.143 CP < 5% Continue

CP 5% 75% CP = 0.446 CP < 5% Continue

CP 10% 25% CP = 0.194 CP < 10% Continue

CP 10% 50% CP = 0.143 CP < 10% Continue

CP 10% 75% CP = 0.446 CP < 10% Continue

CP 20% 25% CP = 0.194 CP < 20% Stop

CP 20% 50% CP = 0.143 CP < 20% Stop

CP 20% 75% CP = 0.446 CP < 20% Continue
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an important consideration when deciding on an interim 
monitoring method and choosing threshold values. In 
general, we considered several different approaches to 
threshold calibration and chose the best values based on 
power and type I error rate considerations. However, this 
process could easily be extended to consider different 
approaches or a more granular grid of potential thresh-
old values. Additional work is needed to develop calibra-
tion approaches for the upstrap which can better control 
the type I error rate while achieving the desired power. 
One possibility is to consider similarities with Bayesian 
interim monitoring using the predictive posterior proba-
bility (PPP), where the posterior probability may be anal-
ogous to the p-value and the PPP threshold analogous to 
our upstrapped proportion [17–19].

While this research is a proof-of-concept study of 
whether upstrapping may be a potential approach for 
interim monitoring for futility, there are limitations 
worth discussing. First, many simplifying assumptions 
were made at both the simulation and modeling stages 
of our analysis. We considered simulation settings based 
only on sample size, information fraction, and power for 
binary outcomes. Further, all simulations assumed uni-
form subject accrual over time, and a constant treatment 
efficacy rate. It would be worth considering more com-
plicated modeling strategies and different outcome types, 
potentially with covariate information included, to reflect 
a wider range of possible study design contexts.

Based on our simulation studies, the upstrap has 
potential to serve as a nonparametric approach to 
implementing interim analyses for futility in clini-
cal trials. Future extensions of this work will focus on 
applying the upstrap to additional outcome types and 
more complex trial designs with comparison to existing 
interim monitoring strategies.
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